Spatial Symmetry Driven Pruning

نویسندگان

  • Carl Schultz
  • Mehul Bhatt
چکیده

Declarative spatial reasoning denotes the ability to (declaratively) specify and solve real-world problems related to geometric and qualitative spatial representation and reasoning within standard knowledge representation and reasoning (KR) based methods (e.g., logic programming and derivatives). One approach for encoding the semantics of spatial relations within a declarative programming framework is by systems of polynomial constraints. However, solving such constraints is computationally intractable in general (i.e. the theory of real-closed fields). We present a new algorithm, implemented within the declarative spatial reasoning system CLP(QS), that drastically improves the performance of deciding the consistency of spatial constraint graphs over conventional polynomial encodings. We develop pruning strategies founded on spatial symmetries that form equivalence classes (based on affine transformations) at the qualitative spatial level. Moreover, pruning strategies are themselves formalised as knowledge about the properties of space and spatial symmetries. We evaluate our algorithm using a range of benchmarks in the class of contact problems, and proofs in mereology and geometry. The empirical results show that CLP(QS) with knowledgebased spatial pruning outperforms conventional polynomial encodings by orders of magnitude, and can thus be applied to problems that are otherwise unsolvable in practice.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Breaking Symmetry of Interchangeable Variables and Values

A common type of symmetry is when both variables and values partition into interchangeable sets. Polynomial methods have been introduced to eliminate all symmetric solutions introduced by such interchangeability. Unfortunately, whilst eliminating all symmetric solutions is tractable in this case, pruning all symmetric values is NP-hard. We introduce a new global constraint called SIGLEX and its...

متن کامل

Determination of Spatial-Temporal Correlation Structure of Troposphere Ozone Data in Tehran City

Spatial-temporal modeling of air pollutants, ground-level ozone concentrations in particular, has attracted recent attention because by using spatial-temporal modeling, can analyze, interpolate or predict ozone levels at any location. In this paper we consider daily averages of troposphere ozone over Tehran city. For eliminating the trend of data, a dynamic linear model is used, then some featu...

متن کامل

Towards breaking more composition symmetries in partial symmetry breaking

The paper proposes a dynamic method, Recursive Symmetry Breaking During Search (ReSBDS), for efficient partial symmetry breaking. We first demonstrate how Partial Symmetry Breaking During Search (ParSBDS) misses important pruning opportunities when given only a subset of symmetries to break. The investigation pinpoints the culprit and in turn suggests rectification. The main idea is to add extr...

متن کامل

Breaking More Composition Symmetries Using Search Heuristics

The pruning power of partial symmetry breaking depends on the given subset of symmetries to break as well as the interactions among symmetry breaking constraints. In the context of Partial Symmetry Breaking During Search (ParSBDS), the search order determines the set of symmetry breaking constraints to add and thus also makes an impact on node and solution pruning. In this paper, we give the fi...

متن کامل

Exploiting orbits in symmetric ILP

This paper describes components of a branch-and-cut algorithm for solving integer linear programs having a large symmetry group. It describes an isomorphism pruning algorithm and variable setting procedures using orbits of the symmetry group. Pruning and orbit computations are performed by backtracking procedures using a Schreier-Sims table for representing the symmetry group. Applications to h...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015